CMOS Low-Power Analog Circuit Design
نویسندگان
چکیده
This chapter covers device and circuit aspects of low-power analog CMOS circuit design. The fundamental limits constraining the design of low-power circuits are first recalled with an emphasis on the implications of supply voltage reduction. Biasing MOS transistors at very low current provides new features but requires dedicated models valid in all regions of operation including weak, moderate and strong inversion. Low-current biasing also has a strong influence on noise and matching properties. All these issues are discussed, together with the particular aspects related to passive devices and parasitic effects. The design process has to be supported by efficient and accurate circuit simulation. To this end, the EKV compact MOST model for circuit simulation is shortly presented. The use of the basic concepts such as pinch-off voltage, inversion factor and specific current are highlighted thanks to some very simple but fundamental circuits and to an effective use of the model. New design techniques that are appropriate for low-power and/or low-voltage circuits are presented with an emphasis on the analog floating point technique, the instantaneous companding principle, and their application to filters. 1.2.
منابع مشابه
High-Accurate Low-Voltage Analog CMOS Current Divider Modify by Neural Network and TLBO Algorithm
A high accurate and low-voltage analog CMOS current divider which operates with a single power supply voltage is designed in 0.18µm CMOS standard technology. The proposed divider uses a differential amplifier and transistor in triode region in order to perform the division. The proposed divider is modeled with neural network while TLBO algorithm is used to optimize it. The proposed optimiza...
متن کاملHigh-Accurate Low-Voltage Analog CMOS Current Divider Modify by Neural Network and TLBO Algorithm
A high accurate and low-voltage analog CMOS current divider which operates with a single power supply voltage is designed in 0.18µm CMOS standard technology. The proposed divider uses a differential amplifier and transistor in triode region in order to perform the division. The proposed divider is modeled with neural network while TLBO algorithm is used to optimize it. The proposed optimiza...
متن کاملLow-Power Adder Design for Nano-Scale CMOS
A fast low-power 1-bit full adder circuit suitable for nano-scale CMOS implementation is presented. Out of the three modules in a common full-adder circuit, we have replaced one with a new design, and optimized another one, all with the goal to reduce the static power consumption. The design has been simulated and evaluated using the 65 nm PTM models.
متن کاملAn Ultra Low Power High Accuracy Current-Mode CMOS Squaring Circuit
A new current-mode squaring circuit that can be used as a basic building block in analog signal processing systems is proposed. The design is based on MOS operating in the subthreshold region to assure low voltage and low power consumption. The performance of the design was confirmed by HSPICE simulation in 0.18m CMOS process. The circuit is operated by ±0.7V supply voltage and consumes 0.2μW ...
متن کاملDesign of power-efficient adiabatic charging circuit in 0.18μm CMOS technology
In energy supply applications for low-power sensors, there are cases where energy should be transmitted from a low-power battery to an output stage load capacitor. This paper presents an adiabatic charging circuit with a parallel switches approach that connects to a low-power battery and charges the load capacitor using a buck converter which operates in continuous conduction mode (CCM). A gate...
متن کامل